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ON TWISTOR SPACES OF THE CLASS #

F. CAMPANA

0. Introduction

Let M*" be a 2n-dimensional compact and connected oriented Rie-
mannian manifold, and Z(M) be its twistor space. The M 2% for which
Z(M) is Kéahler are classified, up to conformal equivalence, in [16], [13]
for n =2, in [24] for n > 4 and even, and in [3] for » > 3. The proofs
are mainly differential-geometric.

Y. S. Poon has, however, constructed self-dual metrics on P,(C) #
P,(C) = M* for which Z (M) is in Fujiki’s class % (i.e., bimeromorphic
to a compact Kihler manifold), but not Kéhler.

We show here that:

(1) for n >3, Z(M) isin % iff it is Kéhler, iff M*" = $*";
(2) for n=2,if Z(M) isin &, then M is either S4, or homeo-
morphic to the connected sum of t(M) > 0 copies of P,(C).

Apart from well-known facts, the proof consists in showing that if
Z(M) isin %, then =, (M) = n (Z(M)) = 0 where =, denotes the
fundamental group.

This last equality is obtained by purely complex-geometric methods,
using the simple-connectedness of the twistor fibers, and the compactness
of the Chow scheme of manifolds in % . More precisely, it is possible
(see Theorem 2.2) to evaluate 7n,(Z), for Z in %, from =, (Y) and
n,(A4) if 4 and Y are compact connected submanifolds of Z, such that
Y has enough “deformations” meeting 4 in Z. When Y is a smooth
rational curve with ample normal bundle in Z (for example, a twistor fiber
in Z(M4)), and A4 is a point on Y, we get, in particular, n,(Z) = 0.
This extends a former result of J. P. Serre on the fundamental group of a
unirational variety.

1. Preliminaries

1.1 Notation. Let X be any irreducible complex analytic space. Then
n,(X):=m=m (X, a) for some unspecified a in X.
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Let f: X — Y be a morphism of irreducible analytic spaces. Then
foim(X)=n/(X,a)—-n(Y):=n (Y, f(a)) denotes the morphism of
groups induced by f. If no confusion arises, we denote also by f, the
morphism induced by the restriction of f to any subspace of X .

Let A and B be two irreducible subspaces of X, and let o : 4 —
X and B : B — X, respectively, be the natural inclusions. Let u :
B' — B be any modification of B (for example, its normalization or its
desingularization). We shall denote by (n,(4), nl(B')> the subgroup of
n,(Z), generated in n,(Z) by «,(n,(4)) and (ﬁou)*(nl(B')).

1.2 Remarks. Let d : X" — X' be a desingularization of the normal
analytic space X' . Then d, is surjective, since all fibers of 4 are con-
nected. However, d, is not always injective: blow-up the vertex of the
cone over an elliptic curve.

Let n: X' — x be the normalization of X. Then n_ is not always
surjective: identify two points in X' =P (C) to obtain X .

1.3 Proposition. Let f : X — Y be a proper surjective morphism of
irreducible analytic spaces. Assume Y is normal. Then (f, - n, (X)) has
finite index in n,(Y).

Proof. Let f:=hog, where g:X — Y, has connected fibers so that
(g,) issurjective, and A : Y; — Y is finite surjective. We can thus assume
that f=h and Y, =X.

Let Y be a dense Zariski open subset of Y over which f is an un-
ramified covering. Let X* := f~'(Y"); then f,(n,(X")) has finite index
in #,(Y"). The assertion now follows from the following commutative
diagram:

1 (X") —— 1 (X)

l l

nl(Y*) — 7 (Y) — 1

in which the exactness of the bottom line follows from the normality of Y,
since any y € Y has a fundamental basis of (contractible) neighborhoods
U in Y suchthat U" := (UNX") is pathwise connected.

1.4 Proposition. Let f: X — S be a surjective analytic map between
irreducible compact analytic spaces, with S normal and X smooth. Let
X, be a connected component of a smooth fiber f _l(s) of f,andlet Y
be a compact irreducible analytic subset of X such that f(Y)=.S. Then
(m,(Y), = (X,)) is a subgroup of finite index in n,(X).

Proof. Let S™ be a dense Zariski open subset of S over which f is
smooth. Let X* be f~'(S*), and let ¥Y* := (X* N Y). The following
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homotopy sequence provides an exact sequence of groups:
£

(X,) =, (X™) — 7y (S7),

77:1 K

(We may assume by Stein reduction, as in Proposition 1.3, that the fibers
of f are connected.) Thus, (r,(X)), nl(Y*)) has finite index in 7, (X"),
and hence in 7,(X) since X is smooth. Hence (z,(X,), n,(Y)) has finite

N
index in 7, (X), by the functoriality of =, .

2. The main result

2.0 Notation. All analytic spaces here are reduced. Let Z, 4, and S
be compact irreducible analytic spaces, where A4 is a subspace of Z, and
S is a subspace of C(Z), the analytic space of compact, pure dimensional,
analytic cycles of Z constructed in [2].

Let G, C S x Z be the graph of the universal analytic family (),
s € §, of cycles of Z parametrized by §, and let p : G, — § and
q : G, — Z be the restriction of the natural projections of § x Z . Recall
that, set-theoretically, G, : {(s, z) st. z€ Y }. Wecall (¥) ¢ simply
the “family S ”. We say that S is Z-covering if g is surjective. Equiva-
lently, this means that any z of Z belongs to at least one member of the
family S'. Because S is compact and Z is irreducible, it is sufficient to
check this condition for z in some open nonempty subset of Z .

Finally, C(Z), denotes the closed analytic subset of C(Z) consisting
of cycles of Z meeting 4. Thus, § is contained in C(Z), iff, for any
sin S, Y meets 4.

2.1 Definition. Let (Z, 4, S) be as in Notation 2.0. Then Z is said
to be (A, S)-connected if:

Z is normal,

(1)
(2) Y, isirreducible for s genericin §,
(3) S is contained in C(Z),,
(4) S is Z-covering.

2.2 Theorem. Let Z be (A, S)-connected. Let s be genericin S, and
n: YS' — Y, be the normalization of Y,. Then (m,(4), nl(Ys')) is of finite
index in n,(Z).

2.3 Remark. In particular, (7,(4), 7,(Y,)) and (7,(4), 7, (¥,)) are
of finite index in 7 (Z) if d:Y, — Y, is a desingularization of Y,.

2.4 Corollary. Let Z be (A, S)-connected. Then the following hold:

(i) If n(A4) = O (in particular, if A = {a} is a single point of Z),
then nl(Y') is of finite index in n (Z).

N



544 F. CAMPANA

(i) If n,(Y]) =0, then =, (A) is of finite index in n,(Z).

(iii) If n,(A) = n,(Y]) =0, then n/(Z) is finite.

Proof of Theorem 2.2. Let G C S’ x Z be the graph of the family
S', where v : §' — § is the normalization of S. Let p,: G — §
and ¢, : G —> Z be the natural projections. Let d : G — G be a
desingularization of G and p’:= (p,od) (resp. ¢’ :=(q,od)). Remark
that G’ is connected. Let H be an irreducible component of (q')_l(A)
such that p’(H) = S’ . The existence of H follows from Definition 2.1(3).

By Proposition 1.4, we get that (nl(G;), n,(H)) has finite index in
n,(G') if G.:=(q")""(5) is smooth.

Since Z is normal, (q')*(nl(G')) has finite index in # (Z) (Propo-
sition (1.4)). Hence gq,((n,(G), n,(H))) = {q, - n,(G.), 4 - m,(H)) has
finite index in 7,(Z). However, (q, - 7,(G))) = (z,(Y})) in #n,(Z), and
(q. - m,(H)) is contained in m,(A4). Hence the assertion.

2.5 Remark. Even when 4 = (a) is a point of Z, and Y, is smooth
for generic s in §, it may happen that #,(Y) # n,(Z).

Let, for example, C be a genus 2 curve, let a' 1 C = T’ beits Albanese
map, let g :C — P;(C) be an embedding, and let y : T" " - T be a degree
d isogeny. Also, let a:=(yod),let f:(axB):C T xP,(C):=2Z,
let @' be any point of C, and let a:= f(a’). Then f, - x,(C) has index
d in n (Z), although Z is easily seen to be ({a}, S)-connected if §
is the irreducible component of C(Z) (e} containing the point of C(Z)
corresponding to f(C).

3. Rationally connected manifolds

3.1 Definition. Let Z be a normal irreducible compact analytic space.
Then Z is said to be rationally connected, or R.C. for short (resp. smoothly
rationally connected, or S.R.C. for short), if there exists (4, .S) as in No-
tation 2.0 such that:

(1) Z is (4, S)-connected,

(2) A= {a} is a single point of Z,

(3) Y, is arational curve (resp. a smooth rational curve) for s generic
in S.

3.2 Remarks. (1) It follows from [9, Theorem 3, p. 206, and Remark,
p. 208] that Z is Moishezon if Z is rationally connected.

(2)If f:Z — Z' is surjective (resp. an unramified covering) and Z
is R.C. (resp. Z’ is SR.C), then Z' is R.C. (resp. Z is SR.C.). In
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particular, taking Z = P, (C), we see that unirational varieties are R.C,,
and even S.R.C., if smooth.

(3) Z isR.C.iff Z :=Z xP(C) is S.R.C,, as one sees by considering
the graph of the composite map P (C) — Z of the normalization of Y,
for s generic in S, and of the inclusion of Y, in Z.

(4) Let Z be smooth and in # . From [17] it follows that Z is S.R.C.
(resp. R.C.) iff it contains a smooth rational curve C (resp. a rational
curve () such that NZ. (resp. TZ, c) is ample, where NZ_. (resp.
T ZIC) is the normal bundle to C in Z (resp. the restriction to C of the
tangent bundle of Z).

3.3 Question. Let Z be an R. C. manifold. Is it unirational? Probably
not, in general. Observe that the answer is obviously negative if Z is not
smooth (take the cone over an elliptic curve).

3.4 Proposition. Let Z be an R. C. manifold. Then h'(Z ,8,) =0 for
r >0 where h' is the dimension of the r th-cohomology group H' (Z , G,).
In particular, the Euler-Poincaré characteristic y(Z ,&,) = 1.

Proof. Since Z is Moishezon, it is sufficient by Hodge symmetry to
show that 4%(Z, Q) =0 for r>0. Let p': G — S and ¢': G' - Z
be as in the proof of Theorem 2.2. Let (s, z) be a smooth point of G,
with s (resp. z) smoothin § (resp. Z), and with G; := ¢'~(s) smooth
and ¢ of maximal rank of (s, z). Let w € HO(Z, Q;), let A be any
(r—1)-dimensional polydisk of S’ centered at s, and let # be any nowhere
vanishing section of (Q '). The holomorphic form [w,/(»')*4] on G,
thus vanishes identically, since G; is a rational curve, for any such choice,
where @, := (¢')"(@),,-14 - For some neighborhood U of s in S,

there thus exists a section v of (Q) such that (¢')" @ = (p')"-v. Since

d~'(U x {a}) is mapped to a by ¢, v and thus  vanish.

3.5 Theorem. Let Z be rationally connected. Then n,(Z)=0.

Proof. We can assume that Z is S.R.C; possibly we replace it by Z x-
P, (C). Since #,(Z) is finite by 2.2, the universal cover u: Z—Zof Z
is SR.C.,s0 ¥ = x(Z, @) = 1. On the other hand, ¥ is also the degree
of the map u by Riemann-Roch.

4. Moishezon twistor spaces

4.1 Notation. Let M = (M™, g, +) be a compact connected oriented
2n-dimensional (n > 2) Riemannian manifold. Let t: Z(M) — M be
its twistor space as constructed in [4] for arbitrary #n, and in [1], [5, §14],
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[11], [20], [22] for » = 2. The almost complex structure of Z(M) is
integrable precisely when g is self-dual, if » = 2, and g is conformally
flat, if n > 3. The fibers of 7, called twistor fibers of Z(M), are then
rational homogeneous manifolds.

4.2 Proposition. Let Z := r_l(p) be the reduced twistor fiber of Z(M)

above p € M*" . Let {Zp} be the corresponding point of C(Z(M)). Then
C(Z(M)) is smooth and of dimension 2n at {Z,}.

Proof. 1If n =2, this follows from [17], since Zp ~ P,(C) has a normal
bundle in Z(M) isomorphic to &#(1)®* [1].

If n > 3, this follows from [24], since hO(Zp, N) =2n, where N is
the normal bundle of Z, in Z(M), and since Z, has a neighborhood
in Z(M) analytically isomorphic to a neighborhood of the zero section in
N, because M is then conformally flat.

4.3 Definition. Using Proposition 4.2, there exists a unique irreducible
component ZM of C(Z(M)) containingall {Z } for p in M. The map

t: M* — ZM such that t(p) = {Zp} is then a differentiable totally real

embedding of M 2" in the smooth locus of ZM . We call ZM the com-
plexification of M ; it has (complex) dimension 27, but it is not compact
in general (see Theorem 4.5 below).

4.4 Proposition. Let p € M let 4:= Z, for n >3, andlet A = {a}
with a€ Z, for n=2. Let S be the irreducible component of (ZM) ,:=
(ZM N C(Z(M)),) containing {Zp} . Then Z(M) is (A, S)-connected
iff S iscompact.

Proof. By the definition of (4, S)-connectedness, we have only to show
the “if” part, and so that .S is Z(M)-covering.

If n =2, this follows immediately from [17].

Assume that n > 3. It is sufficient to show the assertion when M*" =
S*" since M is then conformally flat. We can thus [24] differentiably
identify N with Z x T,M, where T,M is the tangent space to M > at
D, in such a way that for any holomorphic section .S of N over Z . there
exists (u, v) € (YIUM)2 such that s(r) =u+7-v, where Z, is identified
with the set of complex structures z on TpM compatible with both g
and (+). Thus s vanishes at 7, if v = rju, and s vanishes somewhere
iff u = glu,u)y=gw,v) = v? and u-v = g(u,v) =0. From this we
get that s(7) = w iff there exists # which is g-orthogonal to w and Tw,
and such that ¥ = w/2+h and v = w/2-h. The conditions u+71v = w,

u? = v? ,and u-v =0 are thus always compatible. Hence the assertion.
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4.5 Theorem. Let M = (M g, +) be as in Notation 4.1 and such
that the complex structure of Z(M) is integrable. Then the following con-
ditions are equivalent:
(1) (ZM) is compact.
(2) Z(M) isin Fujiki’s class € (i.e., bimeromorphic to some compact
Kdhler manifold).
(3) Z(M) is Moishezon.
Moreover, in each case, n,(M)=0.
Proof. The implications (3) = (2) = (1) are generally true (the last
one follows basically from [6]; see [14] or [19].)
We show that (1) implies n, (M) = 0. We use the notation of Propo-
sition 4.4. Since Z(M) is (4, S)-connected, and (ZM) is compact,
n, (4 ) 0, m,(Y,) =0 for s genericin S, and n,(Z(M)p) =0 forall p
in M*" , it follows from Theorem 2.2 that #n (M) = n,(Z(M)) is finite.
If n=2, Z(M) is then rationally connected, thus Moishezon and with
n(Z(M))=0.1If n>3, n (M) is thus finite.
Let M’ be the (Riemannian) universal covering of M ; it is conformally
equivalent to S*" [18). Then Z (M) is covered by Z(M') which is ratio-
nal homogeneous [24], hence ratlonally connected Thus n (Z(M)) =0,
and M is conformally equivalent to s
We have thus shown:
4.6 Corollary. Let M be conformally flat. Then the following are equiv-
alent:
(1) (ZM) is compact.

(2) Z(M) is Moishezon.

(3) Z(M) is rational homogeneous (hence projective).
(4) M is conformally equivalent to S*" .

From this we get a purely Riemannian characterization of s? , relaxing
condition 7 (M *) =0 in Kuiper’s theorem:

47 Corollary. Let M = (M", g, +) be conformally flat with 'bl(M4)
=0 and g having positive scalar curvature where b, denotes the first Betti
number. Then M .is conformally equivalent to st

Proof. From [7] it follows that bz(M4) = 0 where b, denotes the
second Betti number. Since bl(M4) =0, we get 2(M*Y =2 and t(M*) =
0. Using [16], cf’(Z(M)) = 16(2X(M4)—3T(M)) > 0, where ¢, is the first
chern class of the tangent bundle, and cf’ its third self-intersection. But

Corollary 3.8 of [15] and Serre duality show that " (Z(M), K Z( M)) =0
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for m > 0. Riemann-Roch now shows that the Kodaira dimension of
KZ_(IM) is 3. Hence Z(M) is Moishezon. The result now follows from

Corollary 4.6,
4.8 Remark. Easy examples show that the above conditions do not
characterize S™ for m > 5, and that the condition on scalar curvature

cannot be removed. ,

4.9 Corollary. Assume that M = (M4, g, +) is self-dual and that
Z(M) is Moishezon. Then either M = 5% or M* is homeomorphic
to the connected sum of t©(M) > 0 copies of P,(C).

Proof. ltis sufficient to show that b, (M) =0 [12], [10] since = (M) =
0. From [16], where ¢, = ¢,(Z(M)), x = x(M), and 7 := (M),
we have ¢, - ¢, = 12(x ~ 7). By Riemann-Roch we have ¢, ‘¢, = 24 -
X(Z(M), Oy ,y) = 24, since Z(M) is then rationally connected. Hence
% = 7+2. On the other hand b,(M) =0, so we have x = b,+ 2. Hence

by (M) =0, as desired.

4.10 Added in proof. Recently, C. Lebrun and then H. Kurke have
constructed examples of Moishezon twistor spaces with M * a connected
sum of an arbitrary number of copies of P,(C). As far as the topology
of M* is concerned, 4.9 is thus optimal. Question: Does 4.9 remain true
with “homeomorphic” replaced by “diffeomorphic™?
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